top of page

1. McGhee K.E. et al. Ultrafast optical control of polariton energy in an organic semiconductor microcavity. arXiv preprint, Adv. Opt. Mater. (2023). Accepted

2. Athanasiou M. et al. Flexible, Free-Standing Polymer Membranes Sensitized by CsPbX3 Nanocrystals as Gain Media for Low Threshold, Multicolor Light Amplification. ACS Photonics 9, (7), 2385–2397 (2022)​.

3. McGhee K.E. et al. Polariton condensation in a microcavity using a highly-stable molecular dye. J. Mater. Chem. C, 10, 4187-4195 (2022).

 

4. Pandya R. et al. Tuning the coherent propagation of organic exciton-polaritons through dark state delocalization. Adv. Sci. 9, (18), 2105569 (2022).

5. McGhee K.E. et al. Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror. Scientific reports 11, (1), 1-12 (2021).

6. Renken S. et al. Untargeted effects in organic exciton–polariton transient spectroscopy: A cautionary tale. J. Chem. Phys. 155, (15), 154701 (2021).

7. Georgiou K. et al. Ultralong‐range polariton‐assisted energy transfer in organic microcavities. Angew. Chem. Int. Ed. 60, (30), 16661-16667 (2021).

8. Georgiou K. et. al. Observation of photon-mode decoupling in a strongly coupled multimode microcavity. J. Chem. Phys. 154, (12), 124309 (2021).

9. Georgiou K. et al. Strong Coupling of Organic Dyes Located at the Surface of a Dielectric Slab Microcavity. J. Phys. Chem. Lett . 11, (22), 9893-9900 (2020).

10. Alanazi T.I. et al. Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances 10, (66), 40341-40350 (2020).

11. Gillard D. et al. Strong Exciton-Photon Coupling in Large Area MoSe2 and WSe2 Heterostructures Fabricated from Two-Dimensional Materials Grown by Chemical Vapor Deposition. 2D Materials 8, (1), 011002 (2020).

12. Jayaprakash R. et al. A two-dimensional organic-exciton polariton lattice fabricated using laser patterning.            ACS Photonics 7 (8), 2273–2281 (2020).

13. Putintsev A. et al. Nano-second exciton-polariton lasing in organic microcavities. Appl. Phys. Lett. 117 (12), 123302 (2020).

14. Yagafarov T. et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3, (1), 1-10 (2020).       (News&Blogs 1  2  3  4)

15. Al-Jashaam F. L. et al. The optical structure of micropillar microcavities containing a fluorescent conjugated polymer. Adv. Quantum Technol. 3, 1900067 (2019).

16. Jayaprakash R., Georgiou K. et al. Hybrid organic-inorganic polariton LEDLight: Science & Applications 8, (81), (2019).

17. Sannikov D. et al. Room-temperature broadband polariton-lasing from a dye-filled microcavity. Adv. Opt. Mater. 7, (17) (2019).

18. Polak D. et al. Manipulating matter with strong coupling: harvesting triplet excitons in organic exciton microcavitiesChem. Sci. 11, 343-354 (2019). (News&Blogs 1   2   3   4)

19. Georgiou K. et al. Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity. ACS Photonics 5, (11), 4343-4351 (2018)​.

20. Georgiou K. et al. Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity. ACS Photonics 5, (1), 258-266 (2018).

21. Georgiou K. and Cookson T. et. al. A Yellow Polariton Condensate in a Dye Filled Microcavity. Adv. Opt. Mater. 5, (18), 1700203 (2017). (News&Blogs)

22. Musser, A. J., Rajendran, S. K., Georgiou, K. et al. Intermolecular states in organic dye dispersions: excimers vs. aggregates. J. Mater. Chem. C 5, (33), 8380–8389 (2017).

23. Grant, R. T. et al. Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye. Adv. Opt. Mater. 4, (10), 1615 (2016).

- Claude Bernard -

“The joy of discovery is certainly the liveliest that the mind of man can ever feel”

PUBLICATIONS

Capture2.PNG
Capture1.PNG
AQT.png

A Yellow Polariton Condensate in a Dye-filled Microcavity

Intermolecular States in Organic Dye Dispersions: Excimers Vs. Aggregates

The Optical Structure of Micropillar Microcavities Containing a Fluorescence Conjucated Polymer

Journal Covers

bottom of page