
Center for Nanoscale Materials
Argonne National Laboratory

1. McGhee K.E. et al. Polariton condensation in a microcavity using a highly-stable molecular dye. J. Mater. Chem. C, 10, 4187-4195 (2022).
2. Pandya R. et al. Tuning the coherent propagation of organic exciton-polaritons through dark state delocalization. Adv. Sci. (2022). Accepted
3. McGhee K.E. et al. Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror. Scientific reports 11, (1), 1-12 (2021).
4. Renken S. et al. Untargeted effects in organic exciton–polariton transient spectroscopy: A cautionary tale. J. Chem. Phys. 155, (15), 154701 (2021).
5. Georgiou K. et al. Ultralong‐range polariton‐assisted energy transfer in organic microcavities. Angew. Chem. Int. Ed. 60, (30), 16661-16667 (2021).
6. Georgiou K. et. al. Observation of photon-mode decoupling in a strongly coupled multimode microcavity. J. Chem. Phys. 154, (12), 124309 (2021).
7. Georgiou K. et al. Strong Coupling of Organic Dyes Located at the Surface of a Dielectric Slab Microcavity. J. Phys. Chem. Lett . 11, (22), 9893-9900 (2020).
8. Alanazi T.I. et al. Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances 10, (66), 40341-40350 (2020).
9. Gillard D. et al. Strong Exciton-Photon Coupling in Large Area MoSe2 and WSe2 Heterostructures Fabricated from Two-Dimensional Materials Grown by Chemical Vapor Deposition. 2D Materials 8, (1), 011002 (2020).
10. Jayaprakash R. et al. A two-dimensional organic-exciton polariton lattice fabricated using laser patterning. ACS Photonics 7 (8), 2273–2281 (2020).
11. Putintsev A. et al. Nano-second exciton-polariton lasing in organic microcavities. Appl. Phys. Lett. 117 (12), 123302 (2020).
12. Yagafarov T. et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3, (1), 1-10 (2020). (News&Blogs 1 2 3 4)
13. Al-Jashaam F. L. et al. The optical structure of micropillar microcavities containing a fluorescent conjugated polymer. Adv. Quantum Technol. 3, 1900067 (2019).
14. Jayaprakash R., Georgiou K. et al. Hybrid organic-inorganic polariton LED. Light: Science & Applications 8, (81), (2019).
15. Sannikov D. et al. Room-temperature broadband polariton-lasing from a dye-filled microcavity. Adv. Opt. Mater. 7, (17) (2019).
16. Polak D. et al. Manipulating matter with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chem. Sci. 11, 343-354 (2019). (News&Blogs 1 2 3 4)
17. Georgiou K. et al. Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity. ACS Photonics 5, (11), 4343-4351 (2018).
18. Georgiou K. et al. Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity. ACS Photonics 5, (1), 258-266 (2018).
19. Georgiou K. and Cookson T. et. al. A Yellow Polariton Condensate in a Dye Filled Microcavity. Adv. Opt. Mater. 5, (18), 1700203 (2017). (News&Blogs)
20. Musser, A. J., Rajendran, S. K., Georgiou, K. et al. Intermolecular states in organic dye dispersions: excimers vs. aggregates. J. Mater. Chem. C 5, (33), 8380–8389 (2017).
21. Grant, R. T. et al. Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye. Adv. Opt. Mater. 4, (10), 1615 (2016).
- Claude Bernard -
“The joy of discovery is certainly the liveliest that the mind of man can ever feel”
PUBLICATIONS



A Yellow Polariton Condensate in a Dye-filled Microcavity
Intermolecular States in Organic Dye Dispersions: Excimers Vs. Aggregates
The Optical Structure of Micropillar Microcavities Containing a Fluorescence Conjucated Polymer